If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+10x-102=0
a = 8; b = 10; c = -102;
Δ = b2-4ac
Δ = 102-4·8·(-102)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-58}{2*8}=\frac{-68}{16} =-4+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+58}{2*8}=\frac{48}{16} =3 $
| X^2+45+14x=0 | | 13.x+6=0 | | 2.7=k-8.5 | | (6x-1)(2x+1)10-(2x+1)(x)5=(6x-1)(x)15 | | 42=3(5x-10 | | -(v-1)=-6v+26 | | 3,8x-(6+0,4x)=1.3(6-2.6x) | | 7x+2=3x*26 | | -(2q+6)+3(2q+5)=2q | | -(2q+6)+3(2+5)=2q | | X-3/x+4=3/2 | | 7(y-27)=21 | | 6v-17.1=21.3 | | 8x-17=4x-1 | | 41=6p/3+15 | | 14=u/20.48+6 | | (5x-1)4-(2x-5)3=(2x-5)(5x-1)-3 | | 20=5(2y+7) | | 16t2+5t=30 | | 8x=180−10x | | 4y2+34-10=88 | | 5c−2=33 | | 1+5(x−3)=2x−14+3x | | 20−2x=18 | | 3-a=2a | | (2x+3)*(x-1)=18 | | 9+1/2x=8x+7 | | -7x+10=-7x+10 | | 6x+4=12-2x | | 8x+7=2x-29 | | 1/2(3x-8)=10+x | | k+14/8=6 |